Abstract
Constitutive models that reflect the microstructure evolution is of great significance to accurately predict the forming process of forging. Through thermal tension of 300M steel under various temperatures (950~1150 °C) and strain rates (0.01~10 s−1), the material flow and microstructure evolutions were investigated. In order to describe both the exponential hardening phenomenon at a higher temperature, and the softening phenomenon due to recrystallization at a lower temperature, a constitutive model considering microstructure evolution was proposed based on the Kocks–Mecking model. It was found that considering the stress-strain curve to be exponential in the work-hardening stage could improve the constitutive model prediction precision. The average error was 2.43% (3.59 MPa), showing that the proposed model was more precise than the modified Arrhenius model and the Kocks–Mecking model. The models to describe recrystallization kinetics and average grain size were also constructed. This work enabled the Kocks–Mecking model to predict stress-strain curves with a higher accuracy, and broadened the applicable range of the Kocks–Mecking model.
Funder
Natural Science Foundation of Hubei Province
National Natural Science Foundation of China
Key Laboratory of Automotive Power Train and Electronic in Hubei University of Automotive Technology
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献