Author:
Wang Yanfei,Ning Yaxin,Wang Yibo
Abstract
Simulation of the seismic wave propagation in natural gas hydrate (NGH) is of great importance. To finely portray the propagation of seismic wave in NGH, attenuation properties of the earth’s medium which causes reduced amplitude and dispersion need to be considered. The traditional viscoacoustic wave equations described by integer-order derivatives can only nearly describe the seismic attenuation. Differently, the fractional time derivative seismic wave-equation, which was rigorously derived from the Kjartansson’s constant-Q model, could be used to accurately describe the attenuation behavior in realistic media. We propose a new fractional finite-difference method, which is more accurate and faster with the short memory length. Numerical experiments are performed to show the feasibility of the proposed simulation scheme for NGH, which will be useful for next stage of seismic imaging of NGH.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献