Molecular Dynamics Simulations to Decipher the Role of Phosphorylation of SARS-CoV-2 Nonstructural Proteins (nsps) in Viral Replication

Author:

Alomair LamyaORCID,Mustafa Sabeena,Jafri Mohsin SaleetORCID,Alharbi Wardah,Aljouie AbdulrhmanORCID,Almsned Fahad,Alawad Mohammed,Bokhari Yahya Abdulfattah,Rashid Mamoon

Abstract

Protein phosphorylation is a post-translational modification that enables various cellular activities and plays essential roles in protein interactions. Phosphorylation is an important process for the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). To shed more light on the effects of phosphorylation, we used an ensemble of neural networks to predict potential kinases that might phosphorylate SARS-CoV-2 nonstructural proteins (nsps) and molecular dynamics (MD) simulations to investigate the effects of phosphorylation on nsps structure, which could be a potential inhibitory target to attenuate viral replication. Eight target candidate sites were found as top-ranked phosphorylation sites of SARS-CoV-2. During the process of molecular dynamics (MD) simulation, the root-mean-square deviation (RMSD) analysis was used to measure conformational changes in each nsps. Root-mean-square fluctuation (RMSF) was employed to measure the fluctuation in each residue of 36 systems considered, allowing us to evaluate the most flexible regions. These analysis shows that there are significant structural deviations in the residues namely nsp1 THR 72, nsp2 THR 73, nsp3 SER 64, nsp4 SER 81, nsp4 SER 455, nsp5 SER284, nsp6 THR 238, and nsp16 SER 132. The identified list of residues suggests how phosphorylation affects SARS-CoV-2 nsps function and stability. This research also suggests that kinase inhibitors could be a possible component for evaluating drug binding studies, which are crucial in therapeutic discovery research.

Funder

King Abdullah International Medical Research Center

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference62 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3