Hyperspectral Anomaly Detection with Auto-Encoder and Independent Target

Author:

Chen Shuhan1,Li Xiaorun1,Yan Yunfeng1

Affiliation:

1. Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

As an unsupervised data representation neural network, auto-encoder (AE) has shown great potential in denoising, dimensionality reduction, and data reconstruction. Many AE-based background (BKG) modeling methods have been developed for hyperspectral anomaly detection (HAD). However, their performance is subject to their unbiased reconstruction of BKG and target pixels. This article presents a rather different low rank and sparse matrix decomposition (LRaSMD) method based on AE, named auto-encoder and independent target (AE-IT), for hyperspectral anomaly detection. First, the encoder weight matrix, obtained by a designed AE network, is utilized to construct a projector for generating a low-rank component in the encoder subspace. By adaptively and reasonably determining the number of neurons in the latent layer, the designed AE-based method can promote the reconstruction of BKG. Second, to ensure independence and representativeness, the component in the encoder orthogonal subspace is made into a sphere and followed by finding of unsupervised targets to construct an anomaly space. In order to mitigate the influence of noise on anomaly detection, sparse cardinality (SC) constraint is enforced on the component in the anomaly space for obtaining the sparse anomaly component. Finally, anomaly detector is constructed by combining Mahalanobi distance and multi-components, which include encoder component and sparse anomaly component, to detect anomalies. The experimental results demonstrate that AE-IT performs competitively compared to the LRaSMD-based models and AE-based approaches.

Funder

National Nature Science Foundation of China

Nature Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. Hyperspectral anomaly detection: A dual theory of hyperspectral target detection;Chang;IEEE Trans. Geosci. Remote Sens.,2022

2. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution;Reed;IEEE Trans. Acoust. Speech Signal Process.,1990

3. A locally adaptive background density estimator: An evolution for RX-based anomaly detectors;Matteoli;IEEE Geosci. Remote Sens. Lett.,2014

4. A support vector method for anomaly detection in hyperspectral imagery;Banerjee;IEEE Trans. Geosci. Remote Sens.,2006

5. Subfeature Ensemble-Based Hyperspectral Anomaly Detection Algorithm;Wang;IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3