Method for Parameter Tuning of Hybrid Optimization Algorithms for Problems with High Computational Costs of Objective Function Evaluations

Author:

Sebastjan Przemysław1ORCID,Kuś Wacław1ORCID

Affiliation:

1. Department of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

In this paper, the authors focus on presenting the methodology for tuning optimization algorithm parameters, with a special focus on evolutionary algorithm applications. The problem considered concerns the phenomenon of nonlinear buckling of the automotive shock absorber, which itself is solved using a commercial application of the finite element method (FEM) simulation. These analyses are usually time-consuming; therefore, the authors decided to use a surrogate model, which mimics the behavior of the actual nonlinear FEM simulation. Surrogate modeling (metamodeling) is utilized to drastically shorten the simulation time, and thus study numerous algorithm parameter combinations, allowing for tuning them and providing a robust and efficient tool for optimization. The example shown in this paper is related to the minimization of the shock absorber weight, taking into account the stability of the system. The presented method can be used in any optimization problem where the high computational cost of objective function evaluations prevents tuning of the algorithm parameters.

Funder

Ministry of Science and Higher Education in Poland

Mechanical Engineering Faculty, Silesian University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3