An Innovative Cloud-Fog-Based Smart Grid Scheme for Efficient Resource Utilization

Author:

Alsokhiry Fahad12ORCID,Annuk Andres3ORCID,Mohamed Mohamed A.4ORCID,Marinho Manoel5ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. K. A. CARE Energy Research and Innovation Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Institute of Forestry and Engineering, Estonian University of Life Sciences, 51006 Tartu, Estonia

4. Electrical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt

5. Polytechnic School of Pernambuco, University of Pernambuco (UPE), Recife 50720-001, PE, Brazil

Abstract

Smart grids (SGs) enhance the effectiveness, reliability, resilience, and energy-efficient operation of electrical networks. Nonetheless, SGs suffer from big data transactions which limit their capabilities and can cause delays in the optimal operation and management tasks. Therefore, it is clear that a fast and reliable architecture is needed to make big data management in SGs more efficient. This paper assesses the optimal operation of the SGs using cloud computing (CC), fog computing, and resource allocation to enhance the management problem. Technically, big data management makes SG more efficient if cloud and fog computing (CFC) are integrated. The integration of fog computing (FC) with CC minimizes cloud burden and maximizes resource allocation. There are three key features for the proposed fog layer: awareness of position, short latency, and mobility. Moreover, a CFC-driven framework is proposed to manage data among different agents. In order to make the system more efficient, FC allocates virtual machines (VMs) according to load-balancing techniques. In addition, the present study proposes a hybrid gray wolf differential evolution optimization algorithm (HGWDE) that brings gray wolf optimization (GWO) and improved differential evolution (IDE) together. Simulation results conducted in MATLAB verify the efficiency of the suggested algorithm according to the high data transaction and computational time. According to the results, the response time of HGWDE is 54 ms, 82.1 ms, and 81.6 ms faster than particle swarm optimization (PSO), differential evolution (DE), and GWO. HGWDE’s processing time is 53 ms, 81.2 ms, and 80.6 ms faster than PSO, DE, and GWO. Although GWO is a bit more efficient than HGWDE, the difference is not very significant.

Funder

King Abdullah City for Atomic and Renewable Energy (K.A.CARE) under the K.A.CARE-King Abdulaziz University Collaboration Program

Deanship of Scientific Research, King Abdulaziz University

Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3