Hydrological Monitoring System of the Navío-Quebrado Coastal Lagoon (Colombia): A Very Low-Cost, High-Value, Replicable, Semi-Participatory Solution with Preliminary Results

Author:

Nardini Andrea Gianni Cristoforo1ORCID,Escobar Villanueva Jairo R.2ORCID,Pérez-Montiel Jhonny I.2ORCID

Affiliation:

1. Fundación CREACUA-Centro Recuperación Ecosistemas ACUÁticos, Riohacha 440001, Colombia

2. Grupo de Investigación GISA, Facultad de Ingeniería, Universidad de La Guajira, km 3 + 354 Vía a Maicao, Riohacha 440007, Colombia

Abstract

Like many coastal lagoons in several countries, the “Navío Quebrado” lagoon (La Guajira, Colombia) is a very delicate and precious environment; indeed, it is a nationally recognized Flora and Fauna Sanctuary. Several factors, including climate change, are threatening its existence because of changes in the governing hydro-morphological and biological processes. Certainly, the first step to addressing this problem is to understand its hydrological behavior and to be able to replicate, via simulation, its recent history before inferring likely futures. These potential futures will be marked by changes in the water input by its tributary, the Camarones River, and by modified water exchange with the sea, according to a foreseen sea level rise pattern, as well as by a different evaporation rate from the free surface, according to temperature changes. In order to achieve the required ability to simulate future scenarios, data on the actual behavior have to be gathered, i.e., a monitoring system has to be set up, which to date is non-existent. Conceptually, designing a suitable monitoring system is not a complex issue and seems easy to implement. However, the environmental, socio-cultural, and socio-economic context makes every little step a hard climb. An extremely simple—almost “primitive”—monitoring system has been set up in this case, which is based on very basic measurements of river flow velocity and water levels (river, lagoon, and sea) and the direct participation of local stakeholders, the most important of which is the National Park unit of the Sanctuary. All this may clash with the latest groovy advances of science, such as in situ automatized sensors, remote sensing, machine learning, and digital twins, and several improvements are certainly possible and desirable. However, it has a strong positive point: it provides surprisingly reasonable data and operates at almost zero additional cost. Several technical difficulties made this exercise interesting and worthy of being shared. Its novelty lies in showing how old, simple methods may offer a working solution to new challenges. This humble experience may be of help in several other similar situations across the world.

Funder

Ministerio de Ciencia, Tecnología e Innovación of Colombia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3