Accelerating 3-D GPU-based Motion Tracking for Ultrasound Strain Elastography Using Sum-Tables: Analysis and Initial Results

Author:

Peng BoORCID,Luo Shasha,Xu Zhengqiu,Jiang JingfengORCID

Abstract

Now, with the availability of 3-D ultrasound data, a lot of research efforts are being devoted to developing 3-D ultrasound strain elastography (USE) systems. Because 3-D motion tracking, a core component in any 3-D USE system, is computationally intensive, a lot of efforts are under way to accelerate 3-D motion tracking. In the literature, the concept of Sum-Table has been used in a serial computing environment to reduce the burden of computing signal correlation, which is the single most computationally intensive component in 3-D motion tracking. In this study, parallel programming using graphics processing units (GPU) is used in conjunction with the concept of Sum-Table to improve the computational efficiency of 3-D motion tracking. To our knowledge, sum-tables have not been used in a GPU environment for 3-D motion tracking. Our main objective here is to investigate the feasibility of using sum-table-based normalized correlation coefficient (ST-NCC) method for the above-mentioned GPU-accelerated 3-D USE. More specifically, two different implementations of ST-NCC methods proposed by Lewis et al. and Luo-Konofagou are compared against each other. During the performance comparison, the conventional method for calculating the normalized correlation coefficient (NCC) was used as the baseline. All three methods were implemented using compute unified device architecture (CUDA; Version 9.0, Nvidia Inc., CA, USA) and tested on a professional GeForce GTX TITAN X card (Nvidia Inc., CA, USA). Using 3-D ultrasound data acquired during a tissue-mimicking phantom experiment, both displacement tracking accuracy and computational efficiency were evaluated for the above-mentioned three different methods. Based on data investigated, we found that under the GPU platform, Lou-Konofaguo method can still improve the computational efficiency (17–46%), as compared to the classic NCC method implemented into the same GPU platform. However, the Lewis method does not improve the computational efficiency in some configuration or improves the computational efficiency at a lower rate (7–23%) under the GPU parallel computing environment. Comparable displacement tracking accuracy was obtained by both methods.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementing Delay Multiply and Sum Beamformer on a Hybrid CPU-GPU Platform for Medical Ultrasound Imaging Using OpenMP and CUDA;Computer Modeling in Engineering & Sciences;2021

2. swHPFM: Refactoring and Optimizing the Structured Grid Fluid Mechanical Algorithm on the Sunway TaihuLight Supercomputer;Applied Sciences;2019-12-20

3. Performance Comparison of GPU-Accelerated Fast Motion Estimation Method;2019 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom);2019-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3