Model Test of Micro-Pile Group Reinforcing High Steep Landslide

Author:

Yan Jinkai,Liu Xueling,Zhang Zhichao,Jin Kemo,Lu Xianzhui

Abstract

High steep landslides are a major concern for infrastructure construction in the mountainous areas of Western China. The micro-pile technique has been gradually used to prevent landslides, due to convenient construction and good performance. However, the application of the micro-pile technique on landslide prevention was generally implemented on the front edge of landslides, which is not applicable for the high steep landslides due to the limited operation space. In this study, a large-scale model test on the performance of a micro steep pile group on the prevention of high steep landsides was conducted in order to implement the micro-pile on the top of landslides. The force-deformation characteristics and failure modes of the steel pipe micro-pile group reinforcing high steep landslides were investigated. The test results showed that the landslide thrusts acting on the micro-pile group showed a triangle distribution. The maximum soil earth pressure was observed near the slip surface during landsides. The resistance of the micro pole group was distributed in an inverted triangle, mainly in the upper half of the loaded section. The sliding bed resistance is unevenly distributed along the height direction, and is larger near the slip surface. Once the landslide occurred, the force distribution of each row of steel pipe micro-piles was basically the same. The bending moment of the loaded section of the steel pipe micro-pile was mostly negative, with a larger bending moment in the range of eight times the pile diameter above the slip surface. The largest bending moment value is located at two times the pile diameter on the slip surface. On the other hand, the bending moment of the embedded section of the steel pipe micro-pile is mostly positive, showing a tension state with a maximum value at four times the pile diameter under the slip surface. This implies that the role of loaded and embedded sections of the micro-pile group on the landsides is different. The failure mode of the micro-pile group was mainly attributable to the bending failure within eight times the pile diameter above and below the slip surface.

Funder

Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Reticulated Root Piles to Correct Landslides;Lizzi,1978

2. A design method for reticulated micropiles structure in sliding slopes;Cantoni;Ground Eng.,1989

3. Slope stabilization using in-situ earth reinforcement;Pearlman;Proceedings of the Special Conferenceon Stability and Performance of Slopes and Embankment,1992

4. Slope stabilization by micropile reinforcement;Juran;Landslides,1996

5. Slope Stabilization with Recycled Plastic Pins

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3