Optimization of Ammonia Nitrogen and Phosphorus Removal Performance and Analysis of Microbial Community Structure in Microbial Fuel Cells

Author:

Li JiyuanORCID,Zhou Jie,Cao Wenping,Zhang MingORCID,Wei Xueyu,Zhao Wei,Zhao Jingru,Wu Yu,Shi Taisen

Abstract

In order to study the effects of operating conditions on the performance of a microbial fuel cell (MFC) for treating ammonia nitrogen (NH4+-N) and phosphate and the changes in the microbial community under optimized conditions, in this study, the response surface method (RSM) and central composite design (CCD) were used to carry out experiments and construct a model of the system to analyze the influence of the hydraulic retention time (HRT) and initial influent ammonia concentration on NH4+-N and the total phosphorus (TP) removal performance of the MFC, and the changes in the microbial community structure were analyzed. The results showed that: (1) the initial influent ammonia concentration had a greater impact than the HRT; (2) after optimizing the reaction conditions, the actual removal rates of NH4+-N and TP of the system were 94.88% and 59.39% (the predicted values were 90.18% and 56.25%), respectively; and (3) the total number of species in the optimization group decreased, and the richness of the microbial community decreased. The system conducted the orthoselection of the microbial community and optimized the structure of the microbial community. After the optimization, the dominant strains for ammonia and phosphorus removal on the cathode reactor of each system were strengthened at the phylum and genus levels. Under the coaction of the dominant strains, the efficiencies of nitrogen removal and phosphorus removal in the reactor were significantly improved. The performance optimization of and microbial community change in NH4+-N and TP removal in the MFC system were studied using RSM, which was helpful to improve the effect of nitrogen and phosphorus removal.

Funder

National Natural Science Foundation of China

Anhui Provincial Natural Science Foundation of China

Natural Science research project of Universities in Anhui Province of China

Scientific research project of Anhui Polytechnic University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3