Experimental Studies of Scale Effect on the Shear Strength of Coarse-Grained Soil

Author:

Li ShuyaORCID,Wang Tiancheng,Wang Hao,Jiang Mingjie,Zhu Jungao

Abstract

Shear strength is an essential index for the evaluation of soil stability. Test results of the shear strength of scaled coarse-grained soil (CGS for short) are usually not able to accurately reflect the actual properties and behaviors of in situ CGS due to the scale effect. Therefore, this study focuses on the influence of the scale effect on the shear strength of scaled CGS, which has an important theoretical significance and application for the strength estimation of CGS in high earth-rock dam engineering. According to previous studies, the main cause of the scale effect for scaled CGS is the variation of the gradation structure as well as the maximum particle size (dmax), in which the gradation structure as a characteristic parameter can be expressed by the gradation area (S). A total of 24 groups of test soil samples with different gradations were designed by changing the maximum particle size dmax and gradation area S. Direct shear tests were conducted in this study to quantitatively explore the effect of the gradation structure and the maximum particle size on the shear strength of CGS. Test results suggest that the shear strength indexes (i.e., the cohesion and internal friction angle) of CGS present an increasing trend with the improvement of the maximum particle size dmax, and thus a logarithmic function relationship among c, φ, and dmax is presented. Both cohesion (c) and internal friction angle (φ) are negatively related to the gradation area (S) in most cases. As a result, an empirical relationship between c, φ, and S is established based on the test results. Furthermore, a new prediction model of shear strength of CGS considering the scale effect is proposed, and the accuracy of this model is verified through the test results provided by relevant literature. Finally, the applicability of this model to different types of CGS is discussed.

Funder

Yalong River Joint Fund of Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. Progress in Rockfill Dams

2. Standard for Soil Test Method (China),2019

3. Review of macro- and mesoscopic analysis on rockfill materials in high dams

4. Influence of the scale effect on the mechanical parameters of coarse-grained soils;Wei;Iran. J. Sci. Technol. Trans. Civ. Eng.,2014

5. Instabilities on moraine slopes induced by loss of suction: a case history

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3