Occurrence of Halogenated Pollutants in Domestic and Occupational Indoor Dust

Author:

Simonetti Giulia,Di Filippo PatriziaORCID,Riccardi Carmela,Pomata Donatella,Sonego ElisaORCID,Buiarelli FrancescaORCID

Abstract

The occurrence of halogenated organic pollutants in indoor dust can be high due to the presence of textile, electronic devices, furniture, and building materials treated with these chemicals. In this explorative study, we focused on emerging organic pollutants, such as novel brominated flame retardants (nBFRs) and some perfluoroalkyl substances, together with legacy polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (BDEs) in settled dust collected in houses and workplaces such as one office and two electrotechnical and mechanical workshops. The total contribution of the investigated pollutants was lower in house and in office dusts except for few nBFRs (such as bis (2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate at a concentration of 464.5 ng/g in a house and hexachlorocyclopentadienyldibromocyclooctane at 40.4 ng/g in the office), whereas in electrotechnical and mechanical workshops a high incidence of PCBs, BDEs, and nBFRs occurred (for example, BDE 209 at a concentration of 2368.0 ng/g and tetrabromobisphenol A at 32,320.1 ng/g in electrotechnical and mechanical workshops). Estimated daily intakes were also calculated, showing that domestic and occupational environments can lead to a similar contribution in terms of human exposure. The higher exposure contribution was associated to nBFRs, whose EDIs were in the range of 3968.2–555,694.2 pg/kg bw/day. To provide a complete view about the indoor contamination, in this investigation, we also included polycyclic aromatic hydrocarbons (PAHs) and their oxygenated and nitrated derivatives. Definitely, dust collection represents a simple, fast, and cost-effective sampling and dust contamination level can be a useful indicator of environment healthiness. Besides, the presented method can be a smart tool to provide a time and money saving technique to characterize 99 pollutants thanks to a single sample treatment.

Funder

Istituto Nazionale per l'Assicurazione Contro Gli Infortuni sul Lavoro

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3