Soil Phosphorus Pools, Bioavailability and Environmental Risk in Response to the Phosphorus Supply in the Red Soil of Southern China

Author:

Yan Xiaojun,Yang Wenhao,Chen Xiaohui,Wang Mingkuang,Wang Weiqi,Ye Delian,Wu Liangquan

Abstract

Excess phosphorus (P) accumulation in the soil can change the bioavailability of P and increase the leaching risks, but the quantitative evaluation of these responses in acidic red soil is lacking. This study aimed to investigate the composition of soil P fractions under different phosphorus apparent balances (PAB) in acidic red soil and the bioavailability and the leaching change-points of different P fractions. Five phosphorus (P) fertilization rates were applied (0, 16.38, 32.75, 65.50, 131.00 kg P·ha−1) in every sweet corn cultivation from the field experiment, and the treatments were marked as P0, P1, P2, P3, and P4, respectively. The PAB showed negative values in P0 and P1 which were −49.0 and −15.0 kg P·ha–1 in two years, respectively. In contrast, PAB in P2 as well as in P3 and P4 were positive, the content ranging from 40.2 to 424.3 kg P·ha−1 in two years. Per 100 kg ha−1 P accumulate in the soil, the total P increased by 44.36 and 10.41 mg kg−1 in the surface (0–20 cm) and subsurface (20–40 cm) soil, respectively. The content of inorganic P fractions, including solution phosphate (Sol-P), aluminum phosphate (Al-P), iron phosphate (Fe-P), reduction phosphate (Red-P), and calcium phosphate (Ca-P), significantly increased by 0.25, 16.22, 22.08, 2.04, and 5.08 mg kg−1, respectively, in surface soil per 100 kg ha−1 P accumulated in the soil. Path analysis showed that the most important soil P fractions contributing to Olsen-P were Sol-P and Al-P, which can directly affect Olsen-P, and their coefficients were 0.24 and 0.73, respectively. Furthermore, the incubation experiments were conducted in the laboratory to investigate the leaching risk of different P fractions, and they showed Sol-P was a potential source of leaching, and the leaching change-points of Al-P and Fe-P were 74.70 and 78.34 mg·kg–1, respectively. Continuous P that accumulated in soil changed the composition of P fractions, and the bioavailability as well as the leaching risks increased. This is important in optimizing soil P fertilization management in agricultural ecosystems based on the bioavailability and critical levels for leaching of P fractions.

Funder

National Science and Technology Infrastructure Program

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3