Application of Vortex Induced Vibration Systems to Improve Vertical Mixing and Create Light/Dark Cycles for Enhanced Algal Biomass Productivity in Raceway Ponds

Author:

Akca Mehmet SadikORCID,Ceylan-Perver Gamze,Duranay AytekinORCID,Kinaci Omer KemalORCID,Inanc BulentORCID

Abstract

Limited light availability due to insufficient vertical mixing is one of the main drawbacks of raceway ponds (RWPs), the most common type of microalgae cultivation system. In this study, we have investigated the application of vortex induced vibration (VIV) systems to improve vertical mixing in order to enhance algal biomass productivity. The system consists of a cylinder submerged parallel to the bottom in the pond with two springs attached at its ends. The cylinder oscillates perpendicularly to the flow direction at the pond to increase vertical mixing. A VIV system, which requires no additional energy input, was installed in a 0.3 m deep raceway pond and continuous cylinder oscillation was successfully achieved. Cylinder oscillation frequency of 1.24 s−1 and amplitude of 6.5 cm have been obtained experimentally for 0.3 m s−1 flow velocity. Numerical simulations were carried out with experimental parameters using CFD code and were in good accordance with experimental results. Numerical analysis revealed that it is possible to create high frequency light/dark cycles; mean light/dark cycle frequencies were found to be 2.33 s−1, 5.28 s−1 and 21.17 s−1, at lowermost, middle and uppermost cylinder positions, respectively. Enhanced velocity magnitude of 0.3 m s−1 was achieved in the vertical direction; vertical motion of flow resulting from cylinder oscillation covers about two thirds of pond depth. Effectiveness of the VIV system on biomass growth was also verified by comparative Chlorella vulgaris cultivation under outdoor conditions. It has been observed that the VIV system installed reactor enhanced biomass production capacity by over 20% compared to the control pond. These results indicate that the presented method possesses a potential for enhanced algal biomass production without significant increase in installation and operating costs.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3