Effects of Internal Waves on Acoustic Temporal Coherence in the South China Sea

Author:

Gao Fei12,Hu Ping3,Xu Fanghua1,Li Zhenglin4,Qin Jixing5ORCID

Affiliation:

1. Department of Earth System Science, Ministry of Education Key Laboratory of Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China

2. Naval Research Institute, Tianjin 300061, China

3. Department of the Electronics and Communications Engineering, School of Information Engineering, East China Jiaotong University, Nanchang 330013, China

4. School of Ocean Engineering and Technology, Sun Yat-Sen University, Zhuhai 519000, China

5. State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China

Abstract

An acoustic experiment to measure the sound field during internal wave activity was conducted in the South China Sea. During the experiment, a train of strong internal solitary waves (ISWs) moved from the acoustic source to the receiver array along the acoustic path, and the propagation direction of the ISWs train was almost parallel to the acoustic path. Here, a study of the characteristics and physical mechanisms of the acoustic temporal coherence in this scenario is reported. The temporal coherence was analyzed by using the simulation results and experimental data. The results show that the temporal correlation coefficients oscillate quasi-periodically with both time and time delay, and the predominant oscillation periods are the same as the periods of the ISWs. The predominant fluctuation frequencies of the sound field correspond to some specific modes and lead to the periodicity of the temporal correlation coefficients. In the shallow layer, the spectrum structures of the temporal correlation coefficients are simpler because of the fewer effective modes.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Youth Innovation Promotion Association CAS

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3