High-Spatiotemporal-Resolution Estimation of Ground-Level Ozone in China Based on Machine Learning

Author:

Chen Jiahuan1,Dong Heng12,Zhang Zili34,Quan Bingqian3,Luo Lan5

Affiliation:

1. School of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Zhejiang Spatiotemporal Sophon Bigdata Co., Ltd., Ningbo 315101, China

3. Ecological Environment Monitoring Center of Zhejiang, Hangzhou 310012, China

4. Zhejiang Key Laboratory of Ecological Environment Monitoring, Early Warning and Quality Control Research, Hangzhou 310012, China

5. Zhejiang Key Laboratory of Ecological and Environmental Big Data (2022P10005), Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China

Abstract

High concentrations of ground-level ozone (O3) pose a significant threat to human health. Obtaining high-spatiotemporal-resolution information about ground-level O3 is of paramount importance for O3 pollution control. However, the current monitoring methods have a lot of limitations. Ground-based monitoring falls short in providing extensive coverage, and remote sensing based on satellites is constrained by specific spectral bands, lacking sensitivity to ground-level O3. To address this issue, we combined brightness temperature data from the Himawari-8 satellite with meteorological data and ground-based station data to train four machine learning models to obtain high-spatiotemporal-resolution information about ground-level O3, including Categorical Boosting (CatBoost), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LGBM), and Random Forest (RF). Among these, the CatBoost model exhibited superior performance, achieving a ten-fold cross-validation R2 of 0.8534, an RMSE of 17.735 μg/m3, and an MAE of 12.6594 μg/m3. Furthermore, all the selected feature variables in our study positively influenced the model. Subsequently, we employed the CatBoost model to estimate averaged hourly ground-level O3 concentrations at a 2 km resolution. The estimation results indicate a close relationship between ground-level O3 concentrations and human activities and solar radiation.

Funder

Open Funding of Zhejiang Key Laboratory of Ecological and Environmental Big Data

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3