Application of the NCAR FastEddy® Microscale Model to a Lake Breeze Front

Author:

Welch Brittany M.1ORCID,Horel John D.1ORCID,Sauer Jeremy A.2ORCID

Affiliation:

1. Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT 84112, USA

2. Research Applications Laboratory, NSF National Center for Atmospheric Research, Boulder, CO 80307, USA

Abstract

This study investigates how urban environments influence boundary layer processes during the passage of a Great Salt Lake breeze using a multi-scale modeling system, NCAR’s WRF-Coupled GPU-accelerated FastEddy® (FE) model. Motivated by the need for sub-10 m scale decision support tools for uncrewed aerial systems (UAS), the FE model was used to simulate turbulent flows around urban structures at 5 m horizontal resolution with a 9 km × 9 km domain centered on the Salt Lake City International Airport. FE was one-way nested within a 1 km resolution Weather Research and Forecasting (WRF) domain spanning 400 × 400 km. Focused on the late morning lake breeze on 3 June 2022, an FE simulation was compared with WRF outputs and validated using surface and radar observations. The FE simulation revealed low sensible heat flux and cool near-surface temperatures, attributed to a relatively low specification of thermal roughness suitable for previously tested FE applications. Lake breeze characteristics were minimally affected, as FE effectively resolved interactions between the lake breeze and urban-induced turbulent eddies, providing insights into fine-scale boundary layer processes. FE’s GPU acceleration ensured efficient simulations, underscoring its potential for aiding decision support in UAS operations in complex urban environments.

Funder

National Science Foundation

National Weather Service through the NOAA Collaborative Science, Technology, and Applied Research (CSTAR) Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3