The Drawback of Optimizing Air Cleaner Filters for the Adsorption of Formaldehyde

Author:

Schumacher Stefan1ORCID,Caspari Anna1,Schneiderwind Ute1,Staack Katharina1ORCID,Sager Uta1ORCID,Asbach Christof1

Affiliation:

1. Institut für Umwelt & Energie, Technik & Analytik e.V. (IUTA), 47229 Duisburg, Germany

Abstract

Air cleaners with activated carbon (AC) filters for the adsorption of gaseous pollutants are often used to improve indoor air quality. As formaldehyde is a common and health-relevant indoor air pollutant, many testing standards for air cleaners, such as GB/T 18801:2015, require the cleaning efficacy to be tested with this substance. This often persuades manufacturers to optimize the employed filters specifically for formaldehyde. However, in regions where indoor formaldehyde levels are far below the guideline values, other gaseous pollutants might be more relevant. Thus, the question arises of whether the optimization for formaldehyde can have a negative impact on the adsorption of other gases. To address this question, the clean air delivery rate (CADR) of an air cleaner was determined for different test gases with either a standard AC filter or an AC filter modified for improved formaldehyde adsorption. Although the modified AC filter performed substantially better for formaldehyde, a strong reduction in the CADR was observed for toluene and nitrogen dioxide. This is a drawback for situations in which these gases are more problematic than formaldehyde. The findings suggest using either specialized filters for different applications or blends of different adsorbants to find the best compromise for the most relevant pollutants.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3