A Novel Fault Diagnosis Method for a Power Transformer Based on Multi-Scale Approximate Entropy and Optimized Convolutional Networks

Author:

Shang Haikun1ORCID,Liu Zhidong1,Wei Yanlei1,Zhang Shen1

Affiliation:

1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China

Abstract

Dissolved gas analysis (DGA) in transformer oil, which analyzes its gas content, is valuable for promptly detecting potential faults in oil-immersed transformers. Given the limitations of traditional transformer fault diagnostic methods, such as insufficient gas characteristic components and a high misjudgment rate for transformer faults, this study proposes a transformer fault diagnosis model based on multi-scale approximate entropy and optimized convolutional neural networks (CNNs). This study introduces an improved sparrow search algorithm (ISSA) for optimizing CNN parameters, establishing the ISSA-CNN transformer fault diagnosis model. The dissolved gas components in the transformer oil are analyzed, and the multi-scale approximate entropy of the gas content under different fault modes is calculated. The computed entropy values are then used as feature parameters for the ISSA-CNN model to derive diagnostic results. Experimental data analysis demonstrates that multi-scale approximate entropy effectively characterizes the dissolved gas components in the transformer oil, significantly improving the diagnostic efficiency. Comparative analysis with BPNN, ELM, and CNNs validates the effectiveness and superiority of the proposed ISSA-CNN diagnostic model across various evaluation metrics.

Funder

Foundation of Jilin Educational Committee, China

Publisher

MDPI AG

Reference36 articles.

1. Inversion detection method of oil-immersed transformer abnormal heating state;Deng;IET Electr. Power Appl.,2022

2. First-principles insight into adsorption behavior of a Pd-doped PtTe2 monolayer for CO and C2H2 and the effect of an applied electric field;Wang;J. Phys. Chem. Solids,2023

3. Hybrid CEEMDAN-DBN-ELM for online DGA serials and transformer status forecasting;Zeng;Electr. Power Syst. Res.,2023

4. Interpretation of Dissolved Gas Analysis (DGA) for Palm Fatty Acid Ester (PFAE)-Immersed Transformers;Wakimoto;Meiden Rev. Int. Ed.,2022

5. Analisa Kondisi Minyak Trafo Berdasarkan Hasil Uji Dissolved Gas Analisys Pada Trafo Daya #1 Di PT.PLN (PERSERO) GARDU INDUK KOTABUMI;Afrida;Electrician,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3