Adaptive Finite Element Simulation of Double-Diffusive Convection

Author:

Milhazes Jorge1,Coelho Pedro J.2ORCID

Affiliation:

1. Romax Technology Ltd., Ergo House, Mere Way, Ruddington Fields Business Park, Nottingham NG11 6JS, UK

2. IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Abstract

Double-diffusive convection plays an important role in many physical phenomena of practical importance. However, the numerical simulation of these phenomena is challenging since fine meshes are often required to capture the flow physics. Hence, several different numerical methods have been employed in the past. This work reports the development and application of an adaptive finite element method for the simulation of these phenomena, thereby avoiding the need for the use of very fine meshes over the whole domain. The weak formulation of the conservation equations for mass, momentum, energy and species concentration is used. The Boussinesq approximation relates the density of the fluid to the temperature and/or the species concentration. A second-order backward difference method is used for time discretization and the Galerkin method is employed for spatial discretization. Both adaptive time step and grid refinement techniques are employed, and the code is parallelized using MPI. Three different stabilization methods of the convective-diffusion equations are compared; namely, the streamline upwind Petrov–Galerkin (SUPG) method, and two modified methods aimed at diminishing spurious oscillations that include an artificial diffusion term. This diffusion term may be either isotropic or orthogonal to the streamlines. The addition of artificial isotropic diffusion to the SUPG method provides enhanced stability. The method is applied to double-diffusive finger convection in a sucrose-salt aqueous mixture and a stratified salt solution heated from below. The method accurately reproduces the experimentally observed temporal evolution of the salt fingers in the former case and the location of the interfaces between convective and non-convective zones in the latter.

Funder

Portuguese Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

1. An oceanographical curiosity: The perpetual salt fountain;Stommel;Deep. Sea Res.,1953

2. Double-diffusive phenomena;Turner;Annu. Rev. Fluid Mech.,1974

3. Double-diffusive convection;Huppert;J. Fluid Mech.,1981

4. Recent advances in double-diffusive convection;Fernando;Appl. Mech. Rev.,1994

5. Fernando, H.J.S., and Brandt, A. (1995). Double-Diffusive Convection, Wiley.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3