Effects of Wave-Induced Doppler Velocity on the Sea Surface Current Measurements by Ka-Band Real-Aperture Radar with Small Incidence Angle

Author:

Ma Xiangchao1,Meng Junmin12ORCID,Fan Chenqing12,Chen Ping3

Affiliation:

1. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China

2. Technology Innovation Center for Ocean Telemetry, Ministry of Natural Resources, Qingdao 266061, China

3. Department of Electronics and Information, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

The Doppler shift of microwave radar sea surface echoes serves as the foundation for sea surface current field retrieval; it includes the shift caused by satellite platform motion, ocean waves, and sea surface currents. The Doppler shift caused by ocean waves is known as the wave-induced Doppler velocity (UWD), and its removal is critical for the accurate retrieval of sea surface current fields. The low-incidence Ka-band real-aperture radar rotary scan regime has the capability of directly observing wide-swath two-dimensional current fields, but as a new regime to be further explored and validated, simulation and analysis of UWD in this regime have a significant influence on the hardware design and currently observed applications of this satellite system in its conceptual stage. In this study, we simulated and investigated the impacts of radar parameters and sea-state conditions on the UWD obtained from small-incidence-angle Ka-band rotational scanning radar data and verified the simulation results with the classical analytical solution of average specular scattering point velocity. Simulation results indicate that the change in the azimuth direction of platform observation affects UWD accuracy. Accuracy is the lowest when the antenna is in a vertical side-view. The UWD increases slowly with the incidence angle. Ocean waves are insensitive to polarization in the case of small-incidence-angle specular scattering. The increase in wind speed and the development of wind waves result in a substantial increase in UWD. We classified swell by wavelength and wave height and found that UWD increases with swell size, especially the contribution of swell height to UWD, which is more significant. The contribution of the swell to UWD is smaller than that of wind waves to UWD. Furthermore, the existence of sea surface currents changes the contribution of ocean waves to UWD, and the contribution weakens with increasing wind speed and increases with wind wave development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference60 articles.

1. Martz, H.E., McNeil, B.J., Amundson, S.A., Aspnes, D.E., Barnett, A., Borak, T.B., Braby, L.A., Heimdahl, M.P., Hyland, S.L., and Jacobson, S.H. (2018). Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, The National Academies Press.

2. Rodríguez, E., Wineteer, A., Perkovic-Martin, D., Gál, T., Anderson, S., Zuckerman, S., Stear, J., and Yang, X. (2020). Ka-band Doppler scatterometry over a loop current Eddy. Remote Sens., 12.

3. Global heat and salt transports by Eddy Movement;Dong;Nat. Commun.,2014

4. Romeiser, R. (2014). Encyclopedia of Earth Sciences Series, Springer.

5. Measuring currents, ice drift, and waves from space: The sea surface kinematics multiscale monitoring (skim) concept;Ardhuin;Ocean Sci.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3