Greenhouse Gases Monitoring Instrument on GaoFen-5 Satellite-II: Optical Design and Evaluation

Author:

Luo Haiyan123,Li Zhiwei12,Wu Yang123,Qiu Zhenwei123,Shi Hailiang123ORCID,Wang Qiansheng123ORCID,Xiong Wei123

Affiliation:

1. Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Key Laboratory of Optical Calibration and Characterization, Chinese Academy of Sciences, Hefei 230031, China

3. Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China

Abstract

The Greenhouse gases Monitoring Instrument on GaoFen-5 satellite-II (GMI-II) uses spatial heterodyne spectroscopy (SHS) for quantitative monitoring of atmospheric greenhouse gases (GHG). Unlike the traditional SHS, the interferometer component of the GMI-II was designed with zero optical path difference offset, effectively improving spectral resolution while maintaining the same detector specifications. The secondary imaging system with non-isometric scaling of spatial and spectral dimensions was designed to decrease the integration time of a frame image or improve the spectral signal-to-noise ratio (SNR) under the same integration time. This paper introduces the design, manufacture, adjustment methods, and test results of the main performance indexes of the GMI-II that indicate that the spectral resolution of the O2 A-band detection channel is better than 0.6 cm−1 and other channels are better than 0.27 cm−1. Under the typical radiance of other carbon monitors’ on-orbit statistics, the spectral SNR of the GMI-II is more than 300. These test results demonstrate that the GMI-II can be well adapted to quantitative remote sensing monitoring of atmospheric GHG.

Funder

National Key Research and Development Program of China

Key Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

HFIPS Director’s Fund

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3