Modulation of Neurotransmitter Pathways and Associated Metabolites by Systemic Silencing of Gut Genes in C. elegans

Author:

Shukla Shikha1,Saxena Ankit23,Shukla Sanjeev K.23,Nazir Aamir1

Affiliation:

1. Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India

2. Sophisticated Analytical Instrumentation Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India

3. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India

Abstract

The gut is now recognized as the “second brain” of the human body due to its integral role in neuronal health and functioning. Although we know that the gut communicates with the brain via immunological factors, microbial metabolites, and neurotransmitters, the interplay of these systems remains poorly understood. To investigate this interplay, we silenced 48 genes that are exclusively or primarily expressed in the C. elegans intestine. We studied the associated effects on various aspects of neurodegeneration, including proteotoxicity induced by α-Syn expression. We also assayed behaviours, such as mobility and cognition, that are governed by various neurotransmitters. We identified nine gut genes that significantly modulated these events. We further performed HR-MAS NMR-based metabolomics to recognize the metabolic variability induced by the respective RNAi conditions of R07E3.1, C14A6.1, K09D9.2, ZK593.2, F41H10.8, M02D8.4, M88.1, C03G6.15 and T01D3.6. We found that key metabolites such as phenylalanine, tyrosine, inosine, and glutamine showed significant variation among the groups. Gut genes that demonstrated neuroprotective effects (R07E3.1, C14A6.1, K09D9.2, and ZK593.2) showed elevated levels of inosine, phenylalanine, and tyrosine; whereas, genes that aggravated neurotransmitter levels demonstrated decreased levels of the same metabolites. Our results shed light on the intricate roles of gut genes in the context of neurodegeneration and suggest a new perspective on the reciprocal interrelation of gut genes, neurotransmitters, and associated metabolites. Further studies are needed to decipher the intricate roles of these genes in context of neurodegeneration in greater detail.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3