Identification of Messenger RNA Signatures in Age-Dependent Renal Impairment

Author:

Yanai Katsunori1,Kaneko Shohei1ORCID,Aomatsu Akinori12,Hirai Keiji1ORCID,Ookawara Susumu1ORCID,Morishita Yoshiyuki1

Affiliation:

1. Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan

2. Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan

Abstract

In general populations, age-dependent renal impairment contributes to the progression of renal dysfunction. It has not been known which molecules are involved in age-dependent renal impairment. Messenger RNA (mRNA) has been reported to modulate various renal diseases, and we therefore investigated mRNA signatures in age-dependent renal impairment. We performed an initial microarray-profiling analysis to screen mRNAs, the expression levels of which changed in the kidneys of 50-week-old senescence-accelerated prone (SAMP1) mice (which have accelerated age-dependent renal impairments) compared with those of 50 wk old senescence-accelerated-resistant (SAMR1) mice (which have normal aged kidneys) and with younger (10 wk old) SAMP1 and SAMR1 mice. We next assessed the expressions of mRNAs that were differentially expressed in the kidneys of SAMP1-50wk mice by conducting a quantitative real-time polymerase chain reaction (qRT-PCR) and compared the expressions among the SAMP1-10wk, SAMR1-10wk, and SAMR1-50wk mice. The results of the microarray together with the qRT-PCR analysis revealed five mRNAs whose expression levels were significantly altered in SAMP1-50wk mouse kidneys versus the control mice. The expression levels of the five mRNAs were increased in the kidneys of the mice with age-dependent renal impairment. Our findings indicate that the five mRNAs might be related and could become therapeutic targets for age-dependent renal impairment.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3