Urinary Metabolomic Analysis of Prostate Cancer by UPLC-FTMS and UPLC-Ion Trap MSn

Author:

Chen Chien-Lun12,Chen Yi-Ting13ORCID,Liao Wen-Yu1,Chang Yu-Sun1,Yu Jau-Song14ORCID,Juo Bao-Rong1

Affiliation:

1. Molecular Medicine Research Center, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan

2. Department of Urology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33305, Taiwan

3. Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan

4. Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan

Abstract

Accumulative evidence suggests metabolic disorders correlate with prostate cancer. Metabolic profiling of urine allows the measurement of numerous metabolites simultaneously. This study set up a metabolomic platform consisting of UPLC-FTMS and UPLC-ion trap MSn for urine metabolome analysis. The platform improved retention time, mass accuracy, and signal stability. Additionally, the product ion spectrum obtained from ion trap MSn facilitated structure elucidation of candidate metabolites, especially when authentic standards were not available. Urine samples from six hernia patients and six BPH patients were used for the initial establishment of the analytic platform. This platform was further employed to analyze the urine samples of 27 PCa and 49 BPH patients. Choosing the upper and lower 16% of metabolites, 258 metabolite candidates were selected. Twenty-four of them with AUC values larger than 0.65 were further selected. Eighteen of the twenty-four features can be matched in METLIN and HMDB. Eleven of the eighteen features can be interpreted by MSn experiments. They were used for the combination achieving the best differential power. Finally, four metabolites were combined to reach the AUC value of 0.842 (CI 95, 0.7559 to 0.9279). This study demonstrates the urinary metabolomic analysis of prostate cancer and sheds light on future research.

Funder

Chang Gung Memorial Hospital

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Clinical Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3