Estimation of the Differential Pathlength Factor for Human Skin Using Monte Carlo Simulations

Author:

Althobaiti MuradORCID

Abstract

Near-infrared technology is an emerging non-invasive technique utilized for various medical applications. Recently, there have been many attempts to utilize NIR technology for the continues monitoring of blood glucose levels through the skin. Different approaches and designs have been proposed for non-invasive blood glucose measurements. Light photons penetrating the skin can undergo multiple scattering events, and the actual optical pathlength becomes larger than the source-to-detector separation (optode spacing) in the reflection-mode configuration. Thus, the differential pathlength factor (DPF) must be incorporated into the modified Beer–Lambert law. The accurate estimation of the DPF values will lead to an accurate quantification of the physiological variations within the tissue. In this work, the aim was to systematically estimate the DPF for human skin for a range of source-to-detector separations and wavelengths. The Monte Carlo (MC) method was utilized to mimic the different layers of human skin with different optical properties and blood and water volume fractions. This work could help improve the accuracy of the near-infrared technique in the measurement of physiological variations within skin tissue.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3