Histopathological Image Diagnosis for Breast Cancer Diagnosis Based on Deep Mutual Learning

Author:

Kaur Amandeep1ORCID,Kaushal Chetna1ORCID,Sandhu Jasjeet Kaur1,Damaševičius Robertas2ORCID,Thakur Neetika3

Affiliation:

1. Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, India

2. Department of Applied Informatics, Vytautas Magnus University, 53361 Akademija, Lithuania

3. Junior Laboratory Technician, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India

Abstract

Every year, millions of women across the globe are diagnosed with breast cancer (BC), an illness that is both common and potentially fatal. To provide effective therapy and enhance patient outcomes, it is essential to make an accurate diagnosis as soon as possible. In recent years, deep-learning (DL) approaches have shown great effectiveness in a variety of medical imaging applications, including the processing of histopathological images. Using DL techniques, the objective of this study is to recover the detection of BC by merging qualitative and quantitative data. Using deep mutual learning (DML), the emphasis of this research was on BC. In addition, a wide variety of breast cancer imaging modalities were investigated to assess the distinction between aggressive and benign BC. Based on this, deep convolutional neural networks (DCNNs) have been established to assess histopathological images of BC. In terms of the Break His-200×, BACH, and PUIH datasets, the results of the trials indicate that the level of accuracy achieved by the DML model is 98.97%, 96.78, and 96.34, respectively. This indicates that the DML model outperforms and has the greatest value among the other methodologies. To be more specific, it improves the results of localization without compromising the performance of the classification, which is an indication of its increased utility. We intend to proceed with the development of the diagnostic model to make it more applicable to clinical settings.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3