Integrating Point-of-Care Bacterial Fluorescence Imaging-Guided Care with Continued Wound Measurement for Enhanced Wound Area Reduction Monitoring

Author:

Derwin Rosemarie1,Patton Declan123,Strapp Helen1,Moore Zena145678

Affiliation:

1. School of Nursing and Midwifery, Royal College of Surgeons in Ireland (RCSI), University of Medicine and Health Sciences, Dublin D02 YN77, Ireland

2. Fakeeh College of Health Sciences, Jeddah 23323, Saudi Arabia

3. Faculty of Science, Medicine and Health, University of Wollongong, Wollongong NSW 2522, Australia

4. School of Nursing & Midwifery, Griffith University, Gold Coast, QLD 4222, Australia

5. School of Health Sciences, Faculty of Life and Health Sciences, Ulster University, Belfast BT15 1AP, UK

6. Department of Nursing, Fakeeh College for Medical Sciences, Jeddah 23323, Saudi Arabia

7. Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, 9000 Gent, Belgium

8. Lida Institute, Shanghai 201609, China

Abstract

Aim: This prospective observational study investigated wound area reduction (WAR) outcomes in a complex wound population composed of non-healing acute and chronic wounds. The relationship between bacterial autofluorescence signals and WAR was investigated. Area measurements were collected both manually and digitally, and both methods were compared for accuracy. Methods: Twenty-six participants with 27 wounds of varying etiologies were observed twice weekly for two weeks. Digital wound measurement, wound bacterial status assessment, and targeted debridement were performed through a point-of-care fluorescence imaging device (MolecuLight® i: X, MolecuLight Inc, Toronto, Canada). The wound area reduction (WAR) rate was calculated using baseline and last visit measurements. Statistical analyses, including t-tests, Fisher exact tests, the Wilcoxon signed rank test for method comparison, and ANOVA for bacterial subgroups, were applied as pertinent. Results: The overall average WAR was −3.80 cm2, or a decrease of 46.88% (manual measurement), and −2.62 cm2, or a 46.05% decrease (digital measurement via MolecuLight® device). There were no statistically significant differences between the WAR of acute and chronic wounds (p = 0.7877). A stepwise correlation between the WAR and bacterial status classification per fluorescence findings was observed, where persistent bacteria resulted in worse WAR outcomes. An overestimation of wound area by manual measurement was 23% on average. Conclusion: Fluorescence imaging signals were linked to WAR outcome and could be considered predictive. Wounds exhibiting bacterial loads that persisted at the end of the study period had worse WAR outcomes, while those for which management was able to effectively remove them demonstrated greater WAR. Manual measurement of the wound area consistently overestimated wound size when compared to digital measurement. However, if performed by the same operator, the overestimation was uniform enough that the WAR was calculated to be close to accurate. Notwithstanding, single wound measurements are likely to result in overestimation.

Funder

Irish Research Council, Enterprise Partnership Scheme

IReL

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3