Diabetic Macular Edema Optical Coherence Tomography Biomarkers Detected with EfficientNetV2B1 and ConvNeXt

Author:

Suciu Corina Iuliana1ORCID,Marginean Anca2ORCID,Suciu Vlad-Ioan3ORCID,Muntean George Adrian1,Nicoară Simona Delia14ORCID

Affiliation:

1. Department of Ophthalmology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

2. Department of Computer Science, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

3. Department of Neuroscience, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania

4. Department of Ophthalmology, Emergency County Hospital, 400006 Cluj-Napoca, Romania

Abstract

(1) Background: Diabetes mellitus (DM) is a growing challenge, both for patients and physicians, in order to control the impact on health and prevent complications. Millions of patients with diabetes require medical attention, which generates problems regarding the limited time for screening but also addressability difficulties for consultation and management. As a result, screening programs for vision-threatening complications due to DM have to be more efficient in the future in order to cope with such a great healthcare burden. Diabetic macular edema (DME) is a severe complication of DM that can be prevented if it is timely screened with the help of optical coherence tomography (OCT) devices. Newly developing state-of-the-art artificial intelligence (AI) algorithms can assist physicians in analyzing large datasets and flag potential risks. By using AI algorithms in order to process OCT images of large populations, the screening capacity and speed can be increased so that patients can be timely treated. This quick response gives the physicians a chance to intervene and prevent disability. (2) Methods: This study evaluated ConvNeXt and EfficientNet architectures in correctly identifying DME patterns on real-life OCT images for screening purposes. (3) Results: Firstly, we obtained models that differentiate between diabetic retinopathy (DR) and healthy scans with an accuracy of 0.98. Secondly, we obtained a model that can indicate the presence of edema, detachment of the subfoveolar neurosensory retina, and hyperreflective foci (HF) without using pixel level annotation. Lastly, we analyzed the extent to which the pretrained weights on natural images “understand” OCT scans. (4) Conclusions: Pretrained networks such as ConvNeXt or EfficientNet correctly identify features relevant to the differentiation between healthy retinas and DR, even though they were pretrained on natural images. Another important aspect of our research is that the differentiation between biomarkers and their localization can be obtained even without pixel-level annotation. The “three biomarkers model” is able to identify obvious subfoveal neurosensory detachments, retinal edema, and hyperreflective foci, as well as very small subfoveal detachments. In conclusion, our study points out the possible usefulness of AI-assisted diagnosis of DME for lowering healthcare costs, increasing the quality of life of patients with diabetes, and reducing the waiting time until an appropriate ophthalmological consultation and treatment can be performed.

Funder

Executive Agency for Higher Education, Research, Development and Innovation Funding

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3