An Enhanced Transfer Learning Based Classification for Diagnosis of Skin Cancer

Author:

Anand Vatsala,Gupta Sheifali,Altameem Ayman,Nayak Soumya Ranjan,Poonia Ramesh ChandraORCID,Saudagar Abdul Khader JilaniORCID

Abstract

Skin cancer is the most commonly diagnosed and reported malignancy worldwide. To reduce the death rate from cancer, it is essential to diagnose skin cancer at a benign stage as soon as possible. To save lives, an automated system that can detect skin cancer in its earliest stages is necessary. For the diagnosis of skin cancer, various researchers have performed tasks using deep learning and transfer learning models. However, the existing literature is limited in terms of its accuracy and its troublesome and time-consuming process. As a result, it is critical to design an automatic system that can deliver a fast judgment and considerably reduce mistakes in diagnosis. In this work, a deep learning-based model has been designed for the identification of skin cancer at benign and malignant stages using the concept of transfer learning approach. For this, a pre-trained VGG16 model is improved by adding one flatten layer, two dense layers with activation function (LeakyReLU) and another dense layer with activation function (sigmoid) to enhance the accuracy of this model. This proposed model is evaluated on a dataset obtained from Kaggle. The techniques of data augmentation are applied in order to enhance the random-ness among the input dataset for model stability. The proposed model has been validated by considering several useful hyper parameters such as different batch sizes of 8, 16, 32, 64, and 128; different epochs and optimizers. The proposed model is working best with an overall accuracy of 89.09% on 128 batch size with the Adam optimizer and 10 epochs and outperforms state-of-the-art techniques. This model will help dermatologists in the early diagnosis of skin cancers.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference39 articles.

1. Prevention of Occupational Skin Cancer;Bauer,2020

2. An Automatic Recognition of Multi-class Skin Lesions via Deep Learning Convolutional Neural Networks;Al-antari;Proceedings of the ISIC2018: Skin Image Analysis Workshop and Challenge,2018

3. Anatomy and Physiology;Seeley,2008

4. Nuclei segmentation in histopathology images using deep neural networks;Naylor;Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017),2017

5. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3