Federated Learning-Based Detection of Invasive Carcinoma of No Special Type with Histopathological Images

Author:

Agbley Bless Lord Y.ORCID,Li JianpingORCID,Hossin Md AltabORCID,Nneji Grace UgochiORCID,Jackson JehoiadaORCID,Monday Happy NkantaORCID,James Edidiong ChristopherORCID

Abstract

Invasive carcinoma of no special type (IC-NST) is known to be one of the most prevalent kinds of breast cancer, hence the growing research interest in studying automated systems that can detect the presence of breast tumors and appropriately classify them into subtypes. Machine learning (ML) and, more specifically, deep learning (DL) techniques have been used to approach this problem. However, such techniques usually require massive amounts of data to obtain competitive results. This requirement makes their application in specific areas such as health problematic as privacy concerns regarding the release of patients’ data publicly result in a limited number of publicly available datasets for the research community. This paper proposes an approach that leverages federated learning (FL) to securely train mathematical models over multiple clients with local IC-NST images partitioned from the breast histopathology image (BHI) dataset to obtain a global model. First, we used residual neural networks for automatic feature extraction. Then, we proposed a second network consisting of Gabor kernels to extract another set of features from the IC-NST dataset. After that, we performed a late fusion of the two sets of features and passed the output through a custom classifier. Experiments were conducted for the federated learning (FL) and centralized learning (CL) scenarios, and the results were compared. Competitive results were obtained, indicating the positive prospects of adopting FL for IC-NST detection. Additionally, fusing the Gabor features with the residual neural network features resulted in the best performance in terms of accuracy, F1 score, and area under the receiver operation curve (AUC-ROC). The models show good generalization by performing well on another domain dataset, the breast cancer histopathological (BreakHis) image dataset. Our method also outperformed other methods from the literature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3