Evaluation of Pulmonary Nodules by Radiologists vs. Radiomics in Stand-Alone and Complementary CT and MRI

Author:

Tietz Eric12ORCID,Müller-Franzes Gustav1ORCID,Zimmermann Markus1,Kuhl Christiane Katharina1,Keil Sebastian1,Nebelung Sven1,Truhn Daniel1

Affiliation:

1. Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52072 Aachen, Germany

2. Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstr. 5, 40225 Dusseldorf, Germany

Abstract

Increased attention has been given to MRI in radiation-free screening for malignant nodules in recent years. Our objective was to compare the performance of human readers and radiomic feature analysis based on stand-alone and complementary CT and MRI imaging in classifying pulmonary nodules. This single-center study comprises patients with CT findings of pulmonary nodules who underwent additional lung MRI and whose nodules were classified as benign/malignant by resection. For radiomic features analysis, 2D segmentation was performed for each lung nodule on axial CT, T2-weighted (T2w), and diffusion (DWI) images. The 105 extracted features were reduced by iterative backward selection. The performance of radiomics and human readers was compared by calculating accuracy with Clopper–Pearson confidence intervals. Fifty patients (mean age 63 +/− 10 years) with 66 pulmonary nodules (40 malignant) were evaluated. ACC values for radiomic features analysis vs. radiologists based on CT alone (0.68; 95%CI: 0.56, 0.79 vs. 0.59; 95%CI: 0.46, 0.71), T2w alone (0.65; 95%CI: 0.52, 0.77 vs. 0.68; 95%CI: 0.54, 0.78), DWI alone (0.61; 95%CI:0.48, 0.72 vs. 0.73; 95%CI: 0.60, 0.83), combined T2w/DWI (0.73; 95%CI: 0.60, 0.83 vs. 0.70; 95%CI: 0.57, 0.80), and combined CT/T2w/DWI (0.83; 95%CI: 0.72, 0.91 vs. 0.64; 95%CI: 0.51, 0.75) were calculated. This study is the first to show that by combining quantitative image information from CT, T2w, and DWI datasets, pulmonary nodule assessment through radiomics analysis is superior to using one modality alone, even exceeding human readers’ performance.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3