Exemplar MobileNetV2-Based Artificial Intelligence for Robust and Accurate Diagnosis of Multiple Sclerosis

Author:

Ekmekyapar Tuba1,Taşcı Burak2ORCID

Affiliation:

1. Department of Neurology, Elazığ Fethi Sekin City Hospital, Elazig 23280, Turkiye

2. Vocational School of Technical Sciences, Firat University, Elazig 23119, Turkiye

Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system that prominently affects young adults due to its debilitating nature. The pathogenesis of the disease is focused on the inflammation and neurodegeneration processes. Inflammation is associated with relapses, while neurodegeneration emerges in the progressive stages of the disease. Magnetic resonance imaging (MRI) is commonly used for the diagnosis of MS, and guidelines such as the McDonald criteria are available. MRI is an essential tool to demonstrate the spatial distribution and changes over time in the disease. This study discusses the use of image processing techniques for the diagnosis of MS and specifically combines the MobileNetV2 network with exemplar-based learning, IMrMr feature selection, and K-Nearest Neighbors (KNN) classification methods. Experiments conducted on two different datasets (Dataset 1 and Dataset 2) demonstrate that these methods provide high accuracy in diagnosing MS. Dataset 1 comprises 128 patients with 706 MRI images, 131 MS patients with 667 MRI images, and 150 healthy control subjects with 1373 MRI images. Dataset 2 includes an MS group with 650 MRI images and a healthy control group with 676 MRI images. The results of the study include 10-fold cross-validation results performed on different image sections (Axial, Sagittal, and Hybrid) for Dataset 1. Accuracy rates of 99.76% for Axial, 99.48% for Sagittal, and 98.02% for Hybrid sections were achieved. Furthermore, 100% accuracy was achieved on Dataset 2. In conclusion, this study demonstrates the effective use of powerful image processing methods such as the MobileNetV2 network and exemplar-based learning for the diagnosis of MS. These findings suggest that these methods can be further developed in future research and offer significant potential for clinical applications in the diagnosis and monitoring of MS.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Reference35 articles.

1. Multiple sclerosis: Clinical aspects;Oh;Curr. Opin. Neurol.,2018

2. Coles;Compston;Multiple sclerosis. Lancet,2008

3. New insights into the burden and costs of multiple sclerosis in Europe;Kobelt;Mult. Scler.,2017

4. The relation between inflammation and neurodegeneration in multiple sclerosis brains;Frischer;Brain,2009

5. Multiple sclerosis—A review;Dobson;Eur. J. Neurol.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3