Electrocardiographic Characteristics, Identification, and Management of Frequent Premature Ventricular Contractions

Author:

Tsiachris Dimitris12ORCID,Botis Michail1,Doundoulakis Ioannis1ORCID,Bartsioka Lamprini Iro1,Tsioufis Panagiotis1ORCID,Kordalis Athanasios1,Antoniou Christos-Konstantinos12ORCID,Tsioufis Konstantinos1,Gatzoulis Konstantinos A.1ORCID

Affiliation:

1. First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, “Hippokration” Hospital, 11527 Athens, Greece

2. Athens Heart Center, Athens Medical Center, 15125 Athens, Greece

Abstract

Premature ventricular complexes (PVCs) are frequently encountered in clinical practice. The association of PVCs with adverse cardiovascular outcomes is well established in the context of structural heart disease, yet not so much in the absence of structural heart disease. However, cardiac magnetic resonance (CMR) seems to contribute prognostically in the latter subgroup. PVC-induced myocardial dysfunction refers to the impairment of ventricular function due to PVCs and is mostly associated with a PVC burden > 10%. Surface 12-lead ECG has long been used to localize the anatomic site of origin and multiple algorithms have been developed to differentiate between right ventricular and left ventricular outflow tract (RVOT and LVOT, respectively) origin. Novel algorithms include alternative ECG lead configurations and, lately, sophisticated artificial intelligence methods have been utilized to determine the origins of outflow tract arrhythmias. The decision to therapeutically address PVCs should be made upon the presence of symptoms or the development of PVC-induced myocardial dysfunction. Therapeutic modalities include pharmacological therapy (I-C antiarrhythmic drugs and beta blockers), as well as catheter ablation, which has demonstrated superior efficacy and safety.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3