MRI-Based Radiomics Models to Discriminate Hepatocellular Carcinoma and Non-Hepatocellular Carcinoma in LR-M According to LI-RADS Version 2018

Author:

Zhang Haiping,Guo Dajing,Liu HuanORCID,He Xiaojing,Qiao Xiaofeng,Liu Xinjie,Liu Yangyang,Zhou Jun,Zhou Zhiming,Liu Xi,Fang ZhengORCID

Abstract

Differentiating hepatocellular carcinoma (HCC) from other primary liver malignancies in the Liver Imaging Reporting and Data System (LI-RADS) M (LR-M) tumours noninvasively is critical for patient treatment options, but visual evaluation based on medical images is a very challenging task. This study aimed to evaluate whether magnetic resonance imaging (MRI) models based on radiomics features could further improve the ability to classify LR-M tumour subtypes. A total of 102 liver tumours were defined as LR-M by two radiologists based on LI-RADS and were confirmed to be HCC (n = 31) and non-HCC (n = 71) by surgery. A radiomics signature was constructed based on reproducible features using the max-relevance and min-redundancy (mRMR) and least absolute shrinkage and selection operator (LASSO) logistic regression algorithms with tenfold cross-validation. Logistic regression modelling was applied to establish different models based on T2-weighted imaging (T2WI), arterial phase (AP), portal vein phase (PVP), and combined models. These models were verified independently in the validation cohort. The area under the curve (AUC) of the models based on T2WI, AP, PVP, T2WI + AP, T2WI + PVP, AP + PVP, and T2WI + AP + PVP were 0.768, 0.838, 0.778, 0.880, 0.818, 0.832, and 0.884, respectively. The combined model based on T2WI + AP + PVP showed the best performance in the training cohort and validation cohort. The discrimination efficiency of each radiomics model was significantly better than that of junior radiologists’ visual assessment (p < 0.05; Delong). Therefore, the MRI-based radiomics models had a good ability to discriminate between HCC and non-HCC in LR-M tumours, providing more options to improve the accuracy of LI-RADS classification.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3