A Machine Learning Ensemble Based on Radiomics to Predict BI-RADS Category and Reduce the Biopsy Rate of Ultrasound-Detected Suspicious Breast Masses

Author:

Interlenghi MatteoORCID,Salvatore ChristianORCID,Magni VeronicaORCID,Caldara Gabriele,Schiavon EliaORCID,Cozzi AndreaORCID,Schiaffino SimoneORCID,Carbonaro Luca AlessandroORCID,Castiglioni IsabellaORCID,Sardanelli FrancescoORCID

Abstract

We developed a machine learning model based on radiomics to predict the BI-RADS category of ultrasound-detected suspicious breast lesions and support medical decision-making towards short-interval follow-up versus tissue sampling. From a retrospective 2015–2019 series of ultrasound-guided core needle biopsies performed by four board-certified breast radiologists using six ultrasound systems from three vendors, we collected 821 images of 834 suspicious breast masses from 819 patients, 404 malignant and 430 benign according to histopathology. A balanced image set of biopsy-proven benign (n = 299) and malignant (n = 299) lesions was used for training and cross-validation of ensembles of machine learning algorithms supervised during learning by histopathological diagnosis as a reference standard. Based on a majority vote (over 80% of the votes to have a valid prediction of benign lesion), an ensemble of support vector machines showed an ability to reduce the biopsy rate of benign lesions by 15% to 18%, always keeping a sensitivity over 94%, when externally tested on 236 images from two image sets: (1) 123 lesions (51 malignant and 72 benign) obtained from two ultrasound systems used for training and from a different one, resulting in a positive predictive value (PPV) of 45.9% (95% confidence interval 36.3–55.7%) versus a radiologists’ PPV of 41.5% (p < 0.005), combined with a 98.0% sensitivity (89.6–99.9%); (2) 113 lesions (54 malignant and 59 benign) obtained from two ultrasound systems from vendors different from those used for training, resulting into a 50.5% PPV (40.4–60.6%) versus a radiologists’ PPV of 47.8% (p < 0.005), combined with a 94.4% sensitivity (84.6–98.8%). Errors in BI-RADS 3 category (i.e., assigned by the model as BI-RADS 4) were 0.8% and 2.7% in the Testing set I and II, respectively. The board-certified breast radiologist accepted the BI-RADS classes assigned by the model in 114 masses (92.7%) and modified the BI-RADS classes of 9 breast masses (7.3%). In six of nine cases, the model performed better than the radiologist did, since it assigned a BI-RADS 3 classification to histopathology-confirmed benign masses that were classified as BI-RADS 4 by the radiologist.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3