HDR-EfficientNet: A Classification of Hypertensive and Diabetic Retinopathy Using Optimize EfficientNet Architecture

Author:

Abbas Qaisar1ORCID,Daadaa Yassine1,Rashid Umer2ORCID,Sajid Muhammad Zaheer3ORCID,Ibrahim Mostafa E. A.14ORCID

Affiliation:

1. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

2. Department of Computer Science, Quaid-i-Azam University, Islamabad 44000, Pakistan

3. Department of Computer Software Engineering, MCS, National University of Science and Technology, Islamabad 44000, Pakistan

4. Department of Electrical Engineering, Benha Faculty of Engineering, Benha University, Benha 13518, Qalubia, Egypt

Abstract

Hypertensive retinopathy (HR) and diabetic retinopathy (DR) are retinal diseases closely associated with high blood pressure. The severity and duration of hypertension directly impact the prevalence of HR. The early identification and assessment of HR are crucial to preventing blindness. Currently, limited computer-aided methods are available for detecting HR and DR. These existing systems rely on traditional machine learning approaches, which require complex image processing techniques and are often limited in their application. To address this challenge, this work introduces a deep learning (DL) method called HDR-EfficientNet, which aims to provide an efficient and accurate approach to identifying various eye-related disorders, including diabetes and hypertensive retinopathy. The proposed method utilizes an EfficientNet-V2 network for end-to-end training focused on disease classification. Additionally, a spatial-channel attention method is incorporated into the approach to enhance its ability to identify specific areas of damage and differentiate between different illnesses. The HDR-EfficientNet model is developed using transfer learning, which helps overcome the challenge of imbalanced sample classes and improves the network’s generalization. Dense layers are added to the model structure to enhance the feature selection capacity. The performance of the implemented system is evaluated using a large dataset of over 36,000 augmented retinal fundus images. The results demonstrate promising accuracy, with an average area under the curve (AUC) of 0.98, a specificity (SP) of 96%, an accuracy (ACC) of 98%, and a sensitivity (SE) of 95%. These findings indicate the effectiveness of the suggested HDR-EfficientNet classifier in diagnosing HR and DR. In summary, the HDR-EfficientNet method presents a DL-based approach that offers improved accuracy and efficiency for the detection and classification of HR and DR, providing valuable support in diagnosing and managing these eye-related conditions.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3