Medical Images Segmentation for Lung Cancer Diagnosis Based on Deep Learning Architectures

Author:

Said Yahia12ORCID,Alsheikhy Ahmed A.1,Shawly Tawfeeq3ORCID,Lahza Husam4ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, Northern Border University, Arar 91431, Saudi Arabia

2. Laboratory of Electronics and Microelectronics (LR99ES30), University of Monastir, Monastir 5019, Tunisia

3. Department of Electrical Engineering, Faculty of Engineering at Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Department of Information Technology, College of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Lung cancer presents one of the leading causes of mortalities for people around the world. Lung image analysis and segmentation are one of the primary steps used for early diagnosis of cancer. Handcrafted medical imaging segmentation presents a very time-consuming task for radiation oncologists. To address this problem, we propose in this work to develop a full and entire system used for early diagnosis of lung cancer in CT scan imaging. The proposed lung cancer diagnosis system is composed of two main parts: the first part is used for segmentation developed on top of the UNETR network, and the second part is a classification part used to classify the output segmentation part, either benign or malignant, developed on top of the self-supervised network. The proposed system presents a powerful tool for early diagnosing and combatting lung cancer using 3D-input CT scan data. Extensive experiments have been performed to contribute to better segmentation and classification results. Training and testing experiments have been performed using the Decathlon dataset. Experimental results have been conducted to new state-of-the-art performances: segmentation accuracy of 97.83%, and 98.77% as classification accuracy. The proposed system presents a new powerful tool to use for early diagnosing and combatting lung cancer using 3D-input CT scan data.

Funder

The Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3