Radiomics Score Combined with ACR TI-RADS in Discriminating Benign and Malignant Thyroid Nodules Based on Ultrasound Images: A Retrospective Study

Author:

Luo PengORCID,Fang Zheng,Zhang Ping,Yang Yang,Zhang Hua,Su Lei,Wang Zhigang,Ren Jianli

Abstract

This study aimed to explore the ability of combination model of ultrasound radiomics score (Rad-score) and the thyroid imaging, reporting and data system by the American College of Radiology (ACR TI-RADS) in predicting benign and malignant thyroid nodules (TNs). Up to 286 radiomics features were extracted from ultrasound images of TNs. By using the lowest probability of classification error and average correlation coefficients (POE + ACC) and the least absolute shrinkage and selection operator (LASSO), we finally selected four features to establish Rad-score (Vertl-RLNonUni, Vertl-GLevNonU, WavEnLH-s4 and WavEnHL-s5). DeLong’s test and decision curve analysis (DCA) showed that the method of combining Rad-score and ACR TI-RADS had the best performance (the area under the receiver operating characteristic curve (AUC = 0.913 (95% confidence interval (CI), 0.881–0.939) and 0.899 (95%CI, 0.840–0.942) in the training group and verification group, respectively), followed by ACR TI-RADS (AUC = 0.898 (95%CI, 0.863–0.926) and 0.870 (95%CI, 0.806–0.919) in the training group and verification group, respectively), and followed by Rad-score (AUC = 0.750 (95%CI, 0.704–0.792) and 0.750 (95%CI, 0.672–0.817) in the training group and verification group, respectively). We concluded that the ability of ultrasound Rad-score to distinguish benign and malignant TNs was not as good as that of ACR TI-RADS, and the ability of the combination model of Rad-score and ACR TI-RADS to discriminate benign and malignant TNs was better than ACR TI-RADS or Rad-score alone. Ultrasound Rad-score might play a potential role in improving the differentiation of malignant TNs from benign TNs.

Publisher

MDPI AG

Subject

Clinical Biochemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3