A Sustainable Approach to Asthma Diagnosis: Classification with Data Augmentation, Feature Selection, and Boosting Algorithm

Author:

Lee Zne-Jung1ORCID,Yang Ming-Ren2,Hwang Bor-Jiunn3ORCID

Affiliation:

1. Department of Electronic and Information Engineering, School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China

2. Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 235, Taiwan

3. College of Information Science, Ming Chuan University, Taoyuan 333, Taiwan

Abstract

Asthma is a diverse disease that affects over 300 million individuals globally. The prevalence of asthma has increased by 50% every decade since the 1960s, making it a serious global health issue. In addition to its associated high mortality, asthma generates large economic losses due to the degradation of patients’ quality of life and the impairment of their physical fitness. Asthma research has evolved in recent years to fully analyze why certain diseases develop based on a variety of data and observations of patients’ performance. The advent of new techniques offers good opportunities and application prospects for the development of asthma diagnosis methods. Over the last few decades, techniques like data mining and machine learning have been utilized to diagnose asthma. Nevertheless, these traditional methods are unable to address all of the difficulties associated with improving a small dataset to increase its quantity, quality, and feature space complexity at the same time. In this study, we propose a sustainable approach to asthma diagnosis using advanced machine learning techniques. To be more specific, we use feature selection to find the most important features, data augmentation to improve the dataset’s resilience, and the extreme gradient boosting algorithm for classification. Data augmentation in the proposed method involves generating synthetic samples to increase the size of the training dataset, which is then utilized to enhance the training data initially. This could lessen the phenomenon of imbalanced data related to asthma. Then, to improve diagnosis accuracy and prioritize significant features, the extreme gradient boosting technique is used. The outcomes indicate that the proposed approach performs better in terms of diagnostic accuracy than current techniques. Furthermore, five essential features are extracted to help physicians diagnose asthma.

Funder

Fujian Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3