A Novel Respiratory Rate Estimation Algorithm from Photoplethysmogram Using Deep Learning Model

Author:

Chin Wee Jian12,Kwan Ban-Hoe12ORCID,Lim Wei Yin3ORCID,Tee Yee Kai12ORCID,Darmaraju Shalini1ORCID,Liu Haipeng4ORCID,Goh Choon-Hian12ORCID

Affiliation:

1. Department of Mechatronics and Biomedical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia

2. Centre for Healthcare Science and Technology, Universiti Tunku Abdul Rahman, Kajang 43000, Selangor, Malaysia

3. Electrical and Computer Systems Engineering, School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia

4. Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5RW, UK

Abstract

Respiratory rate (RR) is a critical vital sign that can provide valuable insights into various medical conditions, including pneumonia. Unfortunately, manual RR counting is often unreliable and discontinuous. Current RR estimation algorithms either lack the necessary accuracy or demand extensive window sizes. In response to these challenges, this study introduces a novel method for continuously estimating RR from photoplethysmogram (PPG) with a reduced window size and lower processing requirements. To evaluate and compare classical and deep learning algorithms, this study leverages the BIDMC and CapnoBase datasets, employing the Respiratory Rate Estimation (RRest) toolbox. The optimal classical techniques combination on the BIDMC datasets achieves a mean absolute error (MAE) of 1.9 breaths/min. Additionally, the developed neural network model utilises convolutional and long short-term memory layers to estimate RR effectively. The best-performing model, with a 50% train–test split and a window size of 7 s, achieves an MAE of 2 breaths/min. Furthermore, compared to other deep learning algorithms with window sizes of 16, 32, and 64 s, this study’s model demonstrates superior performance with a smaller window size. The study suggests that further research into more precise signal processing techniques may enhance RR estimation from PPG signals.

Funder

Ministry of Higher Education Malaysia

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3