Development and Clinical Validation of the LymphMonitor Technology to Quantitatively Assess Lymphatic Function

Author:

Polomska Anna,Gousopoulos Epameinondas,Fehr DanielORCID,Bachmann Andreas,Bonmarin MathiasORCID,Detmar MichaelORCID,Lindenblatt Nicole

Abstract

Current diagnostic methods for evaluating the functionality of the lymphatic vascular system usually do not provide quantitative data and suffer from many limitations including high costs, complexity, and the need to perform them in hospital settings. In this work, we present a quantitative, simple outpatient technology named LymphMonitor to quantitatively assess lymphatic function. This method is based on the painless injection of the lymphatic-specific near-infrared fluorescent tracer indocyanine green complexed with human serum albumin, using MicronJet600TM microneedles, and monitoring the disappearance of the fluorescence signal at the injection site over time using a portable detection device named LymphMeter. This technology was investigated in 10 patients with unilateral leg or arm lymphedema. After injection of a tracer solution into each limb, the signal was measured over 3 h and the area under the normalized clearance curve was calculated to quantify the lymphatic function. A statistically significant difference in lymphatic clearance in the healthy versus the lymphedema extremities was found, based on the obtained area under curves of the normalized clearance curves. This study provides the first evidence that the LymphMonitor technology has the potential to diagnose and monitor the lymphatic function in patients.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

European Research Council

SKINTEGRITY flagship project of the University Medicine Zurich initiative

Innosuisse - Schweizerische Agentur für Innovationsförderung

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Portable Multiwavelength Fluorescence Measurement Device: Empirical Evaluation;IEEE Transactions on Instrumentation and Measurement;2023

2. Photoresponsive polymeric microneedles: An innovative way to monitor and treat diseases;Journal of Controlled Release;2023-01

3. Portable Multi-Wavelength Fluorescence Measurement Device;2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA);2022-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3