Machine Learning Approach for the Prediction of In-Hospital Mortality in Traumatic Brain Injury Using Bio-Clinical Markers at Presentation to the Emergency Department

Author:

Mekkodathil Ahammed1ORCID,El-Menyar Ayman12ORCID,Naduvilekandy Mashhood3,Rizoli Sandro4ORCID,Al-Thani Hassan4

Affiliation:

1. Clinical Research, Trauma and Vascular Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar

2. Clinical Medicine, Weill Cornell Medical College, Doha P.O. Box 24144, Qatar

3. Data Science, Alpineaid Management, Ernakulam 682304, India

4. Trauma Surgery Section, Hamad General Hospital (HGH), Doha P.O. Box 3050, Qatar

Abstract

Background: Accurate prediction of in-hospital mortality is essential for better management of patients with traumatic brain injury (TBI). Machine learning (ML) algorithms have been shown to be effective in predicting clinical outcomes. This study aimed to identify predictors of in-hospital mortality in TBI patients using ML algorithms. Materials and Method: A retrospective study was performed using data from both the trauma registry and electronic medical records among TBI patients admitted to the Hamad Trauma Center in Qatar between June 2016 and May 2021. Thirteen features were selected for four ML models including a Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and Extreme Gradient Boosting (XgBoost), to predict the in-hospital mortality. Results: A dataset of 922 patients was analyzed, of which 78% survived and 22% died. The AUC scores for SVM, LR, XgBoost, and RF models were 0.86, 0.84, 0.85, and 0.86, respectively. XgBoost and RF had good AUC scores but exhibited significant differences in log loss between the training and testing sets (% difference in logloss of 79.5 and 41.8, respectively), indicating overfitting compared to the other models. The feature importance trend across all models indicates that aPTT, INR, ISS, prothrombin time, and lactic acid are the most important features in prediction. Magnesium also displayed significant importance in the prediction of mortality among serum electrolytes. Conclusions: SVM was found to be the best-performing ML model in predicting the mortality of TBI patients. It had the highest AUC score and did not show overfitting, making it a more reliable model compared to LR, XgBoost, and RF.

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3