Three-Dimensional Virtual Reconstruction of External Nasal Defects Based on Facial Mesh Generation Network

Author:

Qin Qingzhao1,Li Yinglong2,Wen Aonan1,Zhu Yujia1,Gao Zixiang3,Shan Shenyao3,Wu Hongyu2,Zhao Yijiao13,Wang Yong13

Affiliation:

1. Center of Digital Dentistry/Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology, Beijing 100081, China

2. School of Computer Science and Engineering, Beihang University & State Key Laboratory of Virtual Reality Technology and Systems, Beijing 100191, China

3. Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China

Abstract

(1) Background: In digital-technology-assisted nasal defect reconstruction methods, a crucial step involves utilizing computer-aided design to virtually reconstruct the nasal defect’s complete morphology. However, current digital methods for virtual nasal defect reconstruction have yet to achieve efficient, precise, and personalized outcomes. In this research paper, we propose a novel approach for reconstructing external nasal defects based on the Facial Mesh Generation Network (FMGen-Net), aiming to enhance the levels of automation and personalization in virtual reconstruction. (2) Methods: We collected data from 400 3D scans of faces with normal morphology and combined the structured 3D face template and the Meshmonk non-rigid registration algorithm to construct a structured 3D facial dataset for training FMGen-Net. Guided by defective facial data, the trained FMGen-Net automatically generated an intact 3D face that was similar to the defective face, and maintained a consistent spatial position. This intact 3D face served as the 3D target reference face (3D-TRF) for nasal defect reconstruction. The reconstructed nasal data were extracted from the 3D-TRF based on the defective area using reverse engineering software. The ‘3D surface deviation’ between the reconstructed nose and the original nose was calculated to evaluate the effect of 3D morphological restoration of the nasal defects. (3) Results: In the simulation experiment of 20 cases involving full nasal defect reconstruction, the ‘3D surface deviation’ between the reconstructed nasal data and the original nasal data was 1.45 ± 0.24 mm. The reconstructed nasal data, constructed from the personalized 3D-TRF, accurately reconstructed the anatomical morphology of nasal defects. (4) Conclusions: This paper proposes a novel method for the virtual reconstruction of external nasal defects based on the FMGen-Net model, achieving the automated and personalized construction of the 3D-TRF and preliminarily demonstrating promising clinical application potential.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Peking University Medicine Fund for World’s Leading Discipline or Discipline Cluster Development

Open Subject Foundation of Peking University School and Hospital of Stomatology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3