Performance of the Deep Neural Network Ciloctunet, Integrated with Open-Source Software for Ciliary Muscle Segmentation in Anterior Segment OCT Images, Is on Par with Experienced Examiners

Author:

Straßer TorstenORCID,Wagner SandraORCID

Abstract

Anterior segment optical coherence tomography (AS-OCT), being non-invasive and well-tolerated, is the method of choice for an in vivo investigation of ciliary muscle morphology and function. The analysis requires the segmentation of the ciliary muscle, which is, when performed manually, both time-consuming and prone to examiner bias. Here, we present a convolutional neural network trained for the automatic segmentation of the ciliary muscle in AS-OCT images. Ciloctunet is based on the Freiburg U-net and was trained and validated using 1244 manually segmented OCT images from two previous studies. An accuracy of 97.5% for the validation dataset was achieved. Ciloctunet’s performance was evaluated by replicating the findings of a third study with 180 images as the test data. The replication demonstrated that Ciloctunet performed on par with two experienced examiners. The intersection-over-union index (0.84) of the ciliary muscle thickness profiles between Ciloctunet and an experienced examiner was the same as between the two examiners. The mean absolute error between the ciliary muscle thickness profiles of Ciloctunet and the two examiners (35.16 µm and 45.86 µm) was comparable to the one between the examiners (34.99 µm). A statistically significant effect of the segmentation type on the derived biometric parameters was found for the ciliary muscle area but not for the selective thickness reading (“perpendicular axis”). Both the inter-rater and the intra-rater reliability of Ciloctunet were good to excellent. Ciloctunet avoids time-consuming manual segmentation, thus enabling the analysis of large numbers of images of ample study cohorts while avoiding possible examiner biases. Ciloctunet is available as open-source.

Funder

Volkswagen Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3