Predicting Progression of Kidney Injury Based on Elastography Ultrasound and Radiomics Signatures

Author:

Zhu MinyanORCID,Tang Lumin,Yang Wenqi,Xu Yao,Che Xiajing,Zhou Yin,Shao Xinghua,Zhou Wenyan,Zhang Minfang,Li Guanghan,Zheng Min,Wang Qin,Li Hongli,Mou Shan

Abstract

Background: Shear wave elastography ultrasound (SWE) is an emerging non-invasive candidate for assessing kidney stiffness. However, its prognostic value regarding kidney injury is unclear. Methods: A prospective cohort was created from kidney biopsy patients in our hospital from May 2019 to June 2020. The primary outcome was the initiation of renal replacement therapy or death, while the secondary outcome was eGFR < 60 mL/min/1.73 m2. Ultrasound, biochemical, and biopsy examinations were performed on the same day. Radiomics signatures were extracted from the SWE images. Results: In total, 187 patients were included and followed up for 24.57 ± 5.52 months. The median SWE value of the left kidney cortex (L_C_median) is an independent risk factor for kidney prognosis for stage 3 or over (HR 0.890 (0.796–0.994), p < 0.05). The inclusion of 9 out of 2511 extracted radiomics signatures improved the prognostic performance of the Cox regression models containing the SWE and the traditional index (chi-square test, p < 0.001). The traditional Cox regression model had a c-index of 0.9051 (0.8460–0.9196), which was no worse than the machine learning models, Support Vector Machine (SVM), SurvivalTree, Random survival forest (RSF), Coxboost, and Deepsurv. Conclusions: SWE can predict kidney injury progression with an improved performance by radiomics and Cox regression modeling.

Funder

the National Natural Science Foundation of China

Shanghai Municipal Commission of Health and Family Planning

Open Project Program Foundation of Key Laboratory of Liver and Kidney Diseases

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3