Automatic Detection System for Velopharyngeal Insufficiency Based on Acoustic Signals from Nasal and Oral Channels

Author:

Zhang Yu1,Zhang Jing1,Li Wen1,Yin Heng2,He Ling1ORCID

Affiliation:

1. College of Biomedical Engineering, Sichuan University, Chengdu 610065, China

2. West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

Abstract

Velopharyngeal insufficiency (VPI) is a type of pharyngeal function dysfunction that causes speech impairment and swallowing disorder. Speech therapists play a key role on the diagnosis and treatment of speech disorders. However, there is a worldwide shortage of experienced speech therapists. Artificial intelligence-based computer-aided diagnosing technology could be a solution for this. This paper proposes an automatic system for VPI detection at the subject level. It is a non-invasive and convenient approach for VPI diagnosis. Based on the principle of impaired articulation of VPI patients, nasal- and oral-channel acoustic signals are collected as raw data. The system integrates the symptom discriminant results at the phoneme level. For consonants, relative prominent frequency description and relative frequency distribution features are proposed to discriminate nasal air emission caused by VPI. For hypernasality-sensitive vowels, a cross-attention residual Siamese network (CARS-Net) is proposed to perform automatic VPI/non-VPI classification at the phoneme level. CARS-Net embeds a cross-attention module between the two branches to improve the VPI/non-VPI classification model for vowels. We validate the proposed system on a self-built dataset, and the accuracy reaches 98.52%. This provides possibilities for implementing automatic VPI diagnosis.

Funder

National Natural Science Foundation of China

Exploration and the Research Project of West China Hospital of Stomatology, Sichuan University

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3