Leaching of Nickel and Cobalt from a Mixed Nickel-Cobalt Hydroxide Precipitate Using Organic Acids

Author:

Hussaini Shokrullah1,Tita Angela Manka1ORCID,Kursunoglu Sait2,Kaya Muammer3ORCID,Chu Pengbo1ORCID

Affiliation:

1. Department of Mining and Metallurgical Engineering, University of Nevada, 1664 N. Virginia St, Reno, NV 89557, USA

2. Department of Petroleum and Natural Gas Engineering, Batman University, Batman 72100, Turkey

3. Department of Mining Engineering, Eskisehir Osmangazi University, Eskisehir 26480, Turkey

Abstract

Nickel (Ni) and cobalt (Co) are strategic metals that have found applications in a wide range of metallurgical and industrial uses. In this study, the dissolution of a mixed nickel–cobalt hydroxide precipitate using organic acids (citric, oxalic, and malic acid) was investigated. Citric acid was found to be the best leaching agent yielding the following dissolution rates: 91.2% Ni, 86.8% Co, and 90.8% Mn. Oxalic acid resulted in low dissolution, which is likely due to the formation of insoluble metal oxalates. The impact of acid concentration, leaching time, and temperature on metal dissolution was systematically examined. The optimal dissolution conditions were identified as 0.5 M citric acid at 30 °C for 30 min, utilizing a 1/20 solid/liquid ratio and a stirring speed of 400 revolutions per minute (rpm). The attempt to use oxidants, such as potassium permanganate (KMnO4) and hydrogen peroxide (H2O2), to achieve selective dissolution in an organic acid environment was not successful, which was different from that in the sulfuric acid case. As for the leaching kinetics in the organic acids, it seems that the leaching of Ni correlates with the Shrinking Core Model, specifically regarding porous-layer diffusion control. Based on the experimental results, the activation energy for the leaching of Ni was estimated to be 3.1 kJ/mol.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3