Numerical Study of Gangue Slurry Deposition Behavior in Pipelines Considering Viscosity Change

Author:

Gu Wei1,Wang Yunqing2,Xu Dalong1,Miao Kuo1,Yao Sumeng1,Zhang Hao1,Han Zhenfei1

Affiliation:

1. School of Mines, China University of Mining & Technology, Xuzhou 221116, China

2. School of Resources and Geosciences, China University of Mining & Technology, Xuzhou 221116, China

Abstract

Pipeline conveying is a crucial method for realizing gangue slurry filling. In order to avoid the blockage of gangue slurry in pipeline conveying, it is necessary to clarify the deposition behavior of gangue particles in the pipeline. This paper analyzes coal gangue’s microstructure and mineral composition in the Zhaozhuang No. 2 coal mine through electron microscope scanning and X-ray diffraction tests. We studied the viscosity characteristics of gangue slurry at different mass concentrations and particle sizes and analyzed the change rule of viscosity of gangue slurry with time. Based on determining the nature of the slurry material, a simulation analysis of the deposition behavior of the gangue slurry in a pipeline was carried out using the coupled fluid dynamics–discrete element (CFD-DEM) method. The results show that gangue slurry with a particle size larger than 1.0 mm is likely to lead to the blockage of the pipeline. A small increase in viscosity will promote a uniform distribution of particles inside the pipeline. The deposition behavior of particles is jointly influenced by gravity, fluid interaction force, inter-particle force, and the interaction between particles and the pipeline surface. The research results can be used as a reference for the design and study of gangue slurry grouting systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3