Comparison of Fatty Acid Proportions Determined by Mid-Infrared Spectroscopy and Gas Chromatography in Bulk and Individual Milk Samples

Author:

Samková Eva,Špička Jiří,Hanuš Oto,Roubal Petr,Pecová Lenka,Hasoňová Lucie,Smetana Pavel,Klimešová Marcela,Čítek JindřichORCID

Abstract

Rapid analytical methods can contribute to the expansion of milk fatty acid determination for various important practical purposes. The reliability of data resulting from these routine methods plays a crucial role. Bulk and individual milk samples (60 and 345, respectively) were obtained from Czech Fleckvieh and Holstein dairy cows in the Czech Republic. The correlation between milk fatty acid (FA) proportions determined by the routine method (infrared spectroscopy in the mid-region in connection with Fourier transformation; FT-MIR) and the reference method (gas chromatography; GC) was evaluated. To validate the calibration of the FT-MIR method, a linear regression model was used. For bulk milk samples, the correlation coefficients between these methods were higher for the saturated (SFAs) and unsaturated FAs (UFAs) (r = 0.7169 and 0.9232; p < 0.001) than for the trans isomers of UFAs (TFAs) and polyunsaturated FAs (PUFAs) (r = 0.5706 and 0.6278; p < 0.001). Similar results were found for individual milk samples: r = 0.8592 and 0.8666 (p < 0.001) for SFAs and UFAs, 0.1690 (p < 0.01) for TFAs, and 0.3314 (p < 0.001) for PUFAs. The correlation coefficients for TFAs and PUFAs were statistically significant but too low for practical analytical application. The results indicate that the FT-MIR method can be used for routine determination mainly for SFAs and UFAs.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3